
IDP 4 Attribute resolution
The Shibboleth IDP's collects from authoritative sources (systems of record) and transforms and encodes the data as needed, Attribute Resolver data
before it is passed on to the .attribute filter

All parts of the resolver are always executed in a default configuration, even though much of the data gathered may be discarded later on in the attribute
 stage. Because of this release/filtering all configured data sources (such as LDAP Direcory Services or Relational Database Systems) should be

 (and contain up-to-date, correct data, of course) – at least as highly available as you expect your IDP deployment to be. With LDAP highly available
directory servers achieving redundancy and replication usually is a much simpler (and cheaper) task than with RDBMSs, so sometimes it's worth the extra
effort of synchronising data from other sources into an LDAP directory first and only pointing the IDP to these LDAP data sources. But all of this depends
on local Identity Management decisions and processes and no one recipe will fit all. Feel free to pros and cons of approaches and tools on the discuss eduI

.D.at community mailing list

We'll essentially replace the default content with our own definitions below, though /opt/shibboleth-idp/conf/attribute-resolver.xml
keeping all the attribute ids that are now standardised (via the IDP's Attribute Registry feature, more on that below). Backup copies of all configuration files
can always be found in for comparison and as source for copying/pasting of more/other definitions./opt/shibboleth-idp/dist/conf/

The attribute resolver contains two kinds of configuration items: s, which supply input data from data sources as the LDAP or Database DataConnector
servers described above, and s, which transform the individual data elements (e.g. name, email address) retrieved from those AttributeDefintion
DataConnectors. For the proper on-the-wire representation as SAML attributes (or for other protocols) the IDP comes with a default set of transcoding
rules referenced in . (Deployers of earlier versions of the software will notice how /opt/shibboleth-idp/conf/attributes/default-rules.xml
short and clean AttributeDefinitions can be, and the "missing" DisplayName and AttributeEncoder elements can all be found in the referenced transcoding
rules, e.g. , and so on.conf/attributes/inetOrgPerson.xml conf/attributes/eduPerson.xml

Attribute definitions
Name attributes

givenName
sn
displayName

Identifiers
mail
eduPersonPrincipalName
SAML SubjectID
SAML PairwiseID
European Student Identifier

Authorization / Org data
eduPersonScopedAffiliation
eduPersonEntitlement
schacHomeOrganization

Data Connectors
Static
LDAP

XML root element

This is the XML "container" element all AttributeDefinitions and DataConnectors need to be wrapped in. Be sure to also properly close the root element
with the final line as shown below:</AttributeResolver>

attribute-resolver.xml

<?xml version="1.0" encoding="UTF-8"?>
<AttributeResolver
 xmlns="urn:mace:shibboleth:2.0:resolver"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mace:shibboleth:2.0:resolver http://shibboleth.net/schema/idp/shibboleth-
attribute-resolver.xsd">

<!-- *everything* below needs to be included between the opening and closing tags of this AttributeResolver
element -->

</AttributeResolver>

You can always perform minimal sanity checks on your configuration by checking the well-formedness of the XML, in this case with the command (from
within your IDP's directory):conf

xmlwf attribute-resolver.xml

Attribute definitions

https://wiki.shibboleth.net/confluence/display/IDP4/AttributeResolverConfiguration
https://wiki.univie.ac.at/display/federation/Attributes
https://wiki.univie.ac.at/display/federation/IDP+4+Attribute+release
https://wiki.univie.ac.at/display/federation/IDP+4+Attribute+release
https://wiki.univie.ac.at/display/federation/IDP+4+Attribute+release
https://wiki.univie.ac.at/display/federation/Contact
https://wiki.univie.ac.at/display/federation/Contact
https://wiki.univie.ac.at/display/federation/Contact

Below are examples for all of the attributes commonly used in (inter-)federation today. As such all eduID.at IDPs should at least be able to create all of
those attributes, but their specific definitions may vary from organisation to organisation, due to local Identity Management and software choices. For more
details on the syntax and semantics of this part of the IDP configuration consult .the relevant upstream documentation

If you have created attribute definitions that might also be relevant for other members of the community – e.g. based on the widely used (within Austria) Ca
 software – please share them! Contributions to this wiki are very much welcome. You can also just mpus Online send them to the eduID.at Operations

, of course, and we will edit and include them here.Team

Name attributes

Many SAML Service Providers will need the subject's real name in one form or another, e.g. to allow collaboration between subjects based on trusted,
verified names. Some applications will only be able to use names in separate fields (first name, last name) and some are content with a unified field that
contains the full name in a format chosen by the institution or the subject herself. So for interoperability every IDP will need to be able to provide both
forms. Assuming you have the subject's name available in an LDAP directory and configured a DataConnector for that (see further below), these are
simple examples to use:

givenName

<AttributeDefinition id="givenName" xsi:type="Simple">
 <InputDataConnector ref="myLDAP" attributeNames="givenName" />
</AttributeDefinition>

sn

<AttributeDefinition id="sn" xsi:type="Simple">
 <InputDataConnector ref="myLDAP" attributeNames="sn" />
</AttributeDefinition>

displayName

If you have the attribute available in your LDAP directory we'll go with that, as it's not generally being misused to store data other than the displayName
subject's real name (like " " commonly is, e.g. storing the subject's login name or userid instead of her real name).cn

displayName, alternative 1: direct lookup

<AttributeDefinition id="displayName" xsi:type="Simple">
 <InputDataConnector ref="myLDAP" attributeNames="displayName" />
</AttributeDefinition>

If you only have the "cn" LDAP attribute available and it contains the subject's full name (her login name / userid) you can simply change the not
InputDataConnector's attributeNames XML attribute to become in the second line of the example above. (Don't change anything attributeNames="cn"
else!) In this case you'll need to be aware that contrary to "cn" , though, and therefore you should be absolutely displayName is defined to be single-valued
certain that your source attribute ("cn" in the modified example here) only ever contains a single value per subject in your LDAP deployment, for all
subjects! If that requirement cannot bet met you will need to use a slightly more complex AttributeDefinition that takes of the values (usually the first one
one as returned by an LDAP search) and turns that into the displayName attribute.

If you don't have available in your LDAP deployment (or your "cn" attribute is unusable because it may contain multiple values for a the subject's full name
subject, but your and attributes are single-valued) you can create this SAML attribute within the givenName sn from first name and last name dynamically
Shibboleth IDP:

Most elements below reference an LDAP by its default name " ". AttributeDefinition DataConnector myLDAP Don't change that name
(in your own LDAP DataConnector and all AttributeDefintions that reference it), then you can simply use all the examples provided in this wiki as

, without having to adjust the name of the referenced every time you copy something from this documentation.is InputDataConnector

Also, (e.g.): While these are only used and meaningful don't change the attribute s used in this configurationid id="givenName" internally
within the Shibboleth IDP software (and so could be named anything) the configuration provided in this documentation as well attribute release
as the IDPv4's reference those internal s when deciding what attributes to release to what SAML Service Provider and how Attribute Registry id
to encode them into different wire representations for different protocols.

https://wiki.shibboleth.net/confluence/display/IDP30/AttributeDefinitionConfiguration
https://de.wikipedia.org/wiki/CAMPUSonline
https://de.wikipedia.org/wiki/CAMPUSonline
https://wiki.univie.ac.at/display/federation/Contact
https://wiki.univie.ac.at/display/federation/Contact
https://tools.ietf.org/html/rfc2798#section-2.3
https://wiki.univie.ac.at/display/federation/IDP+4+Attribute+release
https://wiki.shibboleth.net/confluence/display/IDP4/AttributeRegistryConfiguration

displayName, alternative 2: create from givenName and sn

<AttributeDefinition id="displayName" xsi:type="Template">
 <InputAttributeDefinition ref="givenName" />
 <InputAttributeDefinition ref="sn" />
 <Template>${givenName} ${sn}</Template>
</AttributeDefinition>

Note that and allow for multiple values, just like ! So only use the above method if you're certain that your LDAP directory is only using givenName sn cn
those attributes with single values.

Identifiers

With the notable exception of almost all (other) SAML Service Providers will need to consistently recognise a returning subject. I.e., they Library Services
may not need to know you are based on the identifier alone, but they will need to know that you are accessing their services as who the same subject
when you accessed it previously. That's what subjects expect themselfs, of course, otherwise all their work/data stored at a service would be unavailable
to them the next time they accessed the same service! See also this from the Shibboleth wiki.comparison of commonly used identifiers and their properties

All eduID.at IDPs should be able to produce all of these identifiers, in order to be able to interoperate with – and make use of – all SAML Services
Providers your community's members may need to work with.

mail

If you have a "mail" attribute with the subject's email address available in your LDAP directory, the example below is all you need. Ideally the LDAP
attribute should in practice be single-valued (i.e., never contain more than one attribute value for a subject) as some SAML Service Providers cannot
handle multi-valued attributes. This does allow for multiple values, of course, but you may make your life harder by not being able attribute's specification
to supply a single-valued version of what's in your LDAP directory.

<AttributeDefinition id="mail" xsi:type="Simple">
 <InputDataConnector ref="myLDAP" attributeNames="mail" />
</AttributeDefinition>

Some institutions may need more complex processing than the above, e.g. getting the value from one of several LDAP attribute depending on the role
/affiliation of the subject (localPersonStudentMail, localPersonStafMail). The eduID.at community (or the eduID.at Operatons Team) will be able to supply
you with other/more complex examples, so please ask.

Our documentation for the creation and usage of also contains some info on using email addresses as identifiers (and why/when eduPersonPrincipalName
best to avoid it), but sometimes services just need an email address for email's sake and will rely on attributes for the unique identification of the other
subject.

eduPersonPrincipalName

eduPersonPrincipalName is commonly produced either from the local login name (uid, sAMAccountName) by re-using the institutional email address as or
its value. Our explains the pros and cons of each approach in detail. Below you'll find examples for both main methods documentation for that attribute
used to create that attribute. First, the variant based on login name (replace with sourceAttributeID=" "uid sourceAttributeID="sAMAccountNa

 or whatever holds local login names in your LDAP directory):"me

eduPersonPrincipalName, alternative 1: from local login name

<!-- https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName -->
<AttributeDefinition id="eduPersonPrincipalName" xsi:type="Scoped" scope="%{idp.scope}">
 <InputDataConnector ref="myLDAP" attributeNames="uid" />
</AttributeDefinition>

And here's a definition when you've chosen to re-use the institutional email address as eduPersonPrincipalName attribute value:

There are a few types of identifier attributes in use within the federation community, each with their own unique properties, advantages and
disadvantages. These are all explained in the section (or rather its child pages), for each attribute. So go read (and possibly re-read) Attributes
those, as in order to be able to decide if/how you can support them in your IDP. you will need to understand their definition and usage patterns
As always: if anything is unclear!Discuss with the community

https://wiki.univie.ac.at/display/federation/Library+Services
https://wiki.shibboleth.net/confluence/display/CONCEPT/NameIdentifiers
https://tools.ietf.org/html/rfc4524#section-2.16
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName
https://wiki.univie.ac.at/display/federation/Attributes
https://wiki.univie.ac.at/display/federation/Contact

eduPersonPrincipalName, alternative 2: from email address

<AttributeDefinition id="eduPersonPrincipalName" xsi:type="Prescoped">
 <InputDataConnector ref="myLDAP" attributeNames="mail" />
</AttributeDefinition>

A more complex example could use a ScriptedAttribute type definition to enforce in code that only email addresses matching local mail domains will be
used, but what to do about those addresses that fail the check? So in such cases it's probably best to chose some other strategy to create
eduPersonPrincipalName values.

SAML SubjectID

The SAML SubjectID can be seen as an opaque (not name-based, long "ugly" values), more stable version of . It is intended as a eduPersonPrincipalName
replacement for the attribute and possibly also for itself. The example provided below re-uses configuration eduPersonUniqueID eduPersonPrincipalName
already made to support , namely the properties persistent NameIDs idp.persistentId.sourceAttribute (from /opt/shibboleth-idp/conf

) and (from)./saml-nameid.properties idp.persistentId.salt /opt/shibboleth-idp/credentials/secrets.properties

Provided you already have a stable, non-recycled (i.e., not reassigned from one subject to another) internal identifier for your subjects you can set that
attribute in the property of the aforementioned config file and it will also be used as the basis for the SubjectID idp.persistentId.sourceAttribute
attribute. The configuration below also re-uses the configured in the property salt to generate a salted hash of the chosen idp.persistentId.salt
source attribute as (local part of the) SubjectID attribute value:

SubjectID, re-using the definitions for persistendIds

<AttributeDefinition id="subjectHash" xsi:type="ScriptedAttribute" dependencyOnly="true">
 <InputDataConnector ref="myLDAP" attributeNames="%{idp.persistentId.sourceAttribute}" />
 <Script><![CDATA[
 var digestUtils = Java.type("org.apache.commons.codec.digest.DigestUtils");
 var saltedHash = digestUtils.sha256Hex(%{idp.persistentId.sourceAttribute}.getValues().get(0) + "%{idp.
persistentId.salt}");
 subjectHash.addValue(saltedHash);
]]></Script>
</AttributeDefinition>

<AttributeDefinition id="samlSubjectID" xsi:type="Scoped" scope="%{idp.scope}">
 <InputAttributeDefinition ref="subjectHash" />
</AttributeDefinition>

If you do have such an identifier readily available but you can one based on other/more data that would be an alternative approach. For not fabricate
example, if login names may be reassigned at your organisation – meaning you cannot base S you ubjectID solely on login names, salted/hashed or not –
could concatenate the login name with something that's going to be the same in the re-assigned account to create an interim attribute within the IDP not
that then becomes the basis for other attributes and NameIDs:

For example if accounts get a new account creation date after re-activation (i.e., when you first delete and then later re-create accounts) you should also
be able to use a combination of or something along those lines, which would then still be unique even if the same loginname+accountcreationdate
login name would later be reused in a new account for another – or even for the same, which may be an unintended but still acceptable side-effect –
person. So first you'd pull the data to combine into an interim attribute defintion, e.g.:

SubjectID amendment 1: Add interim attribute that combines MS-AD's UPN + whenCreated

<AttributeDefinition id="subjectIdBasis" xsi:type="Template" dependencyOnly="true">
 <InputDataConnector ref="myLDAP" attributeNames="userPrincipalName whenCreated" />
 <Template>${userPrincipalName} ${whenCreated}</Template>
</AttributeDefinition>

Then you put attribute's id into your configuration file so that this property can then be used in the rest of the this saml-nameid.properties
configuration (same way for everyone, independently of the specifics):

Only do this if you are certain that all email address values for all subjects from your instituition are within (one of) your own institutional email
domain(s). The eduPersonPrincipalName is filtered at SAML Service Providers to only allow domain values that have been allowed per each
SAML Identity Provider, cf. the "attribute scope" column in the catalog of . If needed you can ask the eduID.at eduID.at Identity Providers
operations team to allow more of your domains in your IDP's SAML Metadata, to match the email domains in use within your LDAP email
attributes. But you cannot use email addresses as base for eduPersonPrincipalName attribute values if you populate external
(arbitrary) email addresses in the referenced LDAP attribute.

https://wiki.univie.ac.at/display/federation/SAML+Subject-ID
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName
https://wiki.univie.ac.at/display/federation/eduPersonUniqueID
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName
https://wiki.univie.ac.at/display/federation/eduPersonTargetedID
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://eduid.at/entities/idp

idp.persistentId.sourceAttribute = subjectIdBasis

Finally you'd have to change from the above example of creating SubjectIDs, replacing the on the " " only one line InputDataConnector subjectHash
attribute definition with the following :InputAttributeDefinition

SubjectID amendment 2: Change Input

 <AttributeDefinition id="subjectHash" xsi:type="ScriptedAttribute" dependencyOnly="true">
- <InputDataConnector ref="myLDAP" attributeNames="%{idp.persistentId.sourceAttribute}" />
+ <InputAttributeDefinition ref="subjectIdBasis" />
 <Script><![CDATA[

Now the " " attribute definition will use the "fabricated" identifier (combined from the and attributes) as subjectHash userPrincipalName whenCreated
basis and the rest of that example above works the same way for everyone (including the attribute defintion which does not need to be samlSubjectID
changed at all).

SAML PairwiseID

The is an opaque, persistent, service-specific pseudonym. It replaces the attribute as well as SAML PairwiseID eduPersonTargetedID SAML 2.0 persistent
. The example provided below re-uses configuration already made to support , NameIDs persistent NameIDs namely the properties idp.persistentId.

 (from) and (from sourceAttribute /opt/shibboleth-idp/conf/saml-nameid.properties idp.persistentId.salt /opt/shibboleth-
).idp/credentials/secrets.properties

PairwiseID, re-using the definitions for persistendIds

<AttributeDefinition id="samlPairwiseID" xsi:type="Scoped" scope="%{idp.scope}">
 <InputDataConnector ref="computed" attributeNames="computedId" />
</AttributeDefinition>

This references a DataConnector with id="computed" which you'll create using the next snippet (move it to the end of the attribute-resolver.xml file so it
ends up next to the other DataConnector elements). Provided you already have a stable, non-recycled (not reassigned from one subject to another)
identifier for your subjects stored in LDAP you can set that attribute name in the property of the referenced idp.persistentId.sourceAttribute
config file and it will also be used as the basis for the PairwiseID attribute. The configuration below also re-uses the configured in the property salt idp.

 to generate a salted hash of the chosen source attribute as (local part of the) PairwiseID attribute value:persistentId.salt

DataConnector for PairwiseID

<DataConnector id="computed" xsi:type="ComputedId"
 excludeResolutionPhases="c14n/attribute"
 generatedAttributeID="computedId"
 salt="%{idp.persistentId.salt}"
 algorithm="%{idp.persistentId.algorithm:SHA}"
 encoding="%{idp.persistentId.encoding:BASE32}">
 <InputDataConnector ref="myLDAP" attributeNames="%{idp.persistentId.sourceAttribute}" />
</DataConnector>

Similarly to SubjectIDs above: If you don't have a stable, non-reassigned internal identifier in your Systems of Record (LDAP directory, relational database)
and decided to fabricate one (as shown in the examples for SubjectID above) you'll need to replace that DataConnector's dependency with the custom one
you created earlier, e.g.:

PairwiseID amendment: Change Input

- <InputDataConnector ref="myLDAP" attributeNames="%{idp.persistentId.sourceAttribute}" />
+ <InputAttributeDefinition ref="subjectIdBasis" />

This configuration generates attribute values dynamically based on the configured input attribute on each login, and without samlSubjectID
any way to manually influence or override this in selected cases. So if the configured (or fabricated) internal identifier you derive those attribute
values from should ever change for a given person so will all her attribute values for the services that receive them.samlSubjectID

https://wiki.univie.ac.at/display/federation/SAML+Pairwise-ID
https://wiki.univie.ac.at/display/federation/eduPersonTargetedID
https://wiki.univie.ac.at/display/federation/eduPersonTargetedID
https://wiki.univie.ac.at/display/federation/eduPersonTargetedID
https://wiki.univie.ac.at/display/federation/eduPersonTargetedID
https://en.wikipedia.org/wiki/Salt_(cryptography)

European Student Identifier

All Higher Education Institutions will want to make available the (ESI) as that's one of the required attributes in order to access European Student Identifier
 services.Erasmus+

Since the ESI won't be available in the exact format required by the ESI specification we'll provide examples that dynamically generate the ESI based on
the attribute (coming from the DataConnector). In this example the attribute is expected to have values of the form "uid id="myLDAP" uid x<MATRIKELN

" where is the student's Austrian so that we can extract a useable form of the immatriculation number from the R> <MATRIKELNR> immatriculation number
uid attribute using . Any other values matching the given pattern will lead to an empty ESI attribute which will ultimetely not be regular expressions not
released by the IDP:

schacPersonalUniqueCode for ESI, variant 1

<AttributeDefinition id="schacPersonalUniqueCode" xsi:type="Mapped">
 <InputDataConnector ref="myLDAP" attributeNames="uid" />
 <DisplayName xml:lang="de">Europäische Studierendenkennung (ESI)</DisplayName>
 <DisplayName xml:lang="en">European Student Identifier (ESI)</DisplayName>
 <ValueMap>
 <ReturnValue>urn:schac:personalUniqueCode:int:esi:at:$1</ReturnValue>
 <SourceValue>^x([0-9]{8,})$</SourceValue>
 </ValueMap>
 <AttributeEncoder xsi:type="SAML2String" name="urn:oid:1.3.6.1.4.1.25178.1.2.14" friendlyName="
schacPersonalUniqueCode" encodeType="false" />
</AttributeDefinition>

Don't forget to element above since you won't be finding the immatriculation number to be stored within adapt the pattern specified in the SourceValue
your own systems in exactly the format shown above.

In case you have the immatriculation number available in its own attribute already (i.e., no regular expression matching is needed to extract it from other
data; we'll assume use of the ficticious attribute below) you could use a "Template" attribute definition instead of the "Mapped" one matrikelnummer
above:

This simple configuration generates attribute values dynamically based on the configured input attribute on each login, and samlPairwiseID
without any way to manually influence or override this in selected cases. So if the configured (or fabricated) internal identifier you derive those
attribute values from should ever change for a given person so will all her attribute values for the services that receive them.samlPairwiseID

Using a more complex configuration with and a it possible to override or StoredID instead of ComputedID data connectors StorageService is
map chosen input attributes to previously generated output attributes. That would allow to keep the generated and released identifiers (samlPai

 attribute values) the same even in cases where the internal identifier did change for some reason, with a manual change in the rwiseID
database the generated values are persisted to. But having that corrective capability probably only makes sense if you reliably get notified about
cases where the underlying internal identifer (that should never be reassigend from one person to another) actually has been reassigned. Conta

 if you'd prefer to configure a storage service with persistent attribute values so that we can provide additional pointers for that. (E.g. an ct us
embedded does not create an external dependency and/or on a database server.)H2 database SPOF

The examples in this section assume use of the Shibboleth IDPv4 software its new and so will work for IDP without Attribute Registry as is
systems that have been upgraded from IDPv3. It does so by including elements in the examples below.AttributeEncoder
Deployers running IDPv4 the Attribute Registry enabled (typically the result of a clean installation of IDPv4) will need to with remove any Attri

 from the s shown below. (They may also remove any elements used in this elementsbuteEncoder AttributeDefinition DisplayName
section's examples: Like Encoders also DisplayNames will be provided by the IDPv4's Attribute Registry.)

(While this whole is geared towards fresh installations of IDPv4 it seems more useful to provide instructions that require part documentation set
of the deployers to individual lines from the examples rather than expecting them to find out what and where to something. This remove add
assessment may change and the direct applicability of the examples "reversed" in the future, though.)

Instead of any other existing attribute can be used that already contains a form of the student's "Matrikelnummer". That may be the email uid
address, sAMAccountName, userPrincipalName or . Any of those would be fine as long as you can extract the eduPersonPrincipalName
immatriculation number from it using a regular expression in order to transform it into an ESI.

https://wiki.univie.ac.at/display/federation/European+Student+Identifier
https://wiki.univie.ac.at/display/federation/Erasmus
https://wiki.univie.ac.at/display/federation/Matrikelnummer
https://en.wikipedia.org/wiki/Regular_expression
https://wiki.shibboleth.net/confluence/display/IDP4/PersistentNameIDGenerationConfiguration
https://wiki.shibboleth.net/confluence/display/IDP4/StorageConfiguration
https://wiki.univie.ac.at/display/federation/Contact
https://wiki.univie.ac.at/display/federation/Contact
https://www.h2database.com/
https://en.wikipedia.org/wiki/Single_point_of_failure
https://shibboleth.atlassian.net/wiki/spaces/IDP4/pages/1272054306/AttributeRegistryConfiguration
https://wiki.univie.ac.at/display/federation/Shibboleth+IDP+4
https://wiki.univie.ac.at/display/federation/eduPersonPrincipalName

schacPersonalUniqueCode for ESI, variant 2

<AttributeDefinition id="schacPersonalUniqueCode" xsi:type="Template">
 <InputDataConnector ref="myLDAP" attributeNames="matrikelnummer" />
 <DisplayName xml:lang="de">Europäische Studierendenkennung (ESI)</DisplayName>
 <DisplayName xml:lang="en">European Student Identifier (ESI)</DisplayName>
 <Template>urn:schac:personalUniqueCode:int:esi:at:${matrikelnummer}</Template>
 <AttributeEncoder xsi:type="SAML2String" name="urn:oid:1.3.6.1.4.1.25178.1.2.14" friendlyName="
schacPersonalUniqueCode" encodeType="false" />
</AttributeDefinition>

Finally, institutions that do manage immatriculation numbers for their students but that still do need to provide the ESI attribute can use the following not
example to dynamically generate ESI values from any other locally available identifier (below again assuming use of the attribute) combining it with uid
the canonical DNS Domain (") of the institution:scope"

schacPersonalUniqueCode for ESI, variant 3

<AttributeDefinition id="schacPersonalUniqueCode" xsi:type="Template">
 <InputDataConnector ref="myLDAP" attributeNames="uid" />
 <DisplayName xml:lang="de">Europäische Studierendenkennung (ESI)</DisplayName>
 <DisplayName xml:lang="en">European Student Identifier (ESI)</DisplayName>
 <Template>urn:schac:personalUniqueCode:int:esi:%{idp.scope}:${uid}</Template>
 <AttributeEncoder xsi:type="SAML2String" name="urn:oid:1.3.6.1.4.1.25178.1.2.14" friendlyName="
schacPersonalUniqueCode" encodeType="false" />
</AttributeDefinition>

See the local (i.e., Austrian) profile of the specification for the abstract requirements.European Student Identifier

Authorization / Org data

eduPersonScopedAffiliation

eduPersonScopedAffiliation is sometimes used for simple authorisation cases. describes a person's relationship with the IDP's eduPersonAffiliation
organisation in general terms (from a controlled vocabulary of 8 allowed values), and eduPerson Affiliation is simply the scoped variant of that (i.e., Scoped
the applicable affiliation values each suffixed with "@" + the main institutional domain, same as for eduPersonPrincipalName or samlSubjectID). Only the
scoped version should be used for federated use cases: Even if a recieving Service Provider did not need to differentiate between e.g. faculty@example

 and it can always easily throw away the scope with minimal processing, yielding the unscoped version (here: ".edu faculty@research.example.com
" in both cases).faculty

In the examples below we'll first create the unscoped version using one of several alternative methods, since this part will need be done differently at most
organisations as it depends on local Identity Management choices. Then further below we'll create the scoped variant from that, in a configuration snippet
that remains the same for everyone, no matter how the (unscoped) affiliation values was created.

Here's a very simple example that creates a few of the affiliation values based on a match of some other attribute's value, in this case the login name regex
as stored in the "uid" LDAP attribute (cf.). Replace with "sAMAccountName" or "cn" or whatever as needed in your deployment. sourceAttributeID
This method can be used if you assign login names based on a schema that encodes the role/affiliation of a subject into her login name/userid. While
overloading identifiers with semantics (such as role information) is not recommended such practices exist so you might as well make use of them if it
makes your IDP configuration easier. Note that identical elements are used twice below to make sure all students are also members, and SourceValue
all staff are also members, too, as required by the .eduPerson specification

https://eduid.at/entities/idp
https://wiki.univie.ac.at/display/federation/European+Student+Identifier
https://wiki.univie.ac.at/display/federation/eduPersonScopedAffiliation
https://wiki.univie.ac.at/display/federation/eduPersonScopedAffiliation
https://en.wikipedia.org/wiki/Regular_expression
https://wiki.univie.ac.at/display/federation/eduPersonScopedAffiliation

eduPersonAffiliation, alternative 1: from login name

<AttributeDefinition id="eduPersonAffiliation" xsi:type="Mapped" dependencyOnly="true">
 <InputDataConnector ref="myLDAP" attributeNames="uid" />
 <ValueMap>
 <ReturnValue>student</ReturnValue>
 <SourceValue>m.+</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>staff</ReturnValue>
 <SourceValue>p.+</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>member</ReturnValue>
 <SourceValue>m.+</SourceValue>
 <SourceValue>p.+</SourceValue>
 </ValueMap>
</AttributeDefinition>

Here's another example where the correct affiliations are derived from the name of a locally defined group attribute (in the example phoUsergroup
below). This example uses partial string matches for the individual affiliations, and a regex that makes all subjects with group value (at least, or also) a any

:member

eduPersonAffiliation, alternative 2: from group names

<AttributeDefinition id="eduPersonAffiliation" xsi:type="Mapped" dependencyOnly="true">
 <InputDataConnector ref="myLDAP" attributeNames="phoUsergroup" />
 <DefaultValue>affiliate</DefaultValue>
 <ValueMap>
 <ReturnValue>faculty</ReturnValue>
 <SourceValue partialMatch="true">B</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>student</ReturnValue>
 <SourceValue partialMatch="true">ST</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>alum</ReturnValue>
 <SourceValue partialMatch="true">A</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>member</ReturnValue>
 <SourceValue>[^]+</SourceValue>
 </ValueMap>
</AttributeDefinition>

And here's another example that derives the applicable affiliations from the subject's LDAP Distinguished Name (DN) or rather its place within the LDAP
Directory Information Tree (DIT). The referenced sourceAttributeID here is an operational attribute maintained by the LDAP server. distinguishedName
(This may be called in other LDAP server implemenations.) Everyone within OU=MitarbeiterInnen will be assigned , only those within entryDN employee
OU=Verwaltung,OU=MitarbeiterInnen will become , and so on.additionally staff
In the final all employees, staff, faculty and students get assigned "member", as required by the .ValueMap also eduPerson specification

https://wiki.univie.ac.at/display/federation/eduPersonScopedAffiliation

eduPersonAffiliation, alternative 3: from the object's DN or place in the DIT

<AttributeDefinition id="eduPersonAffiliation" xsi:type="Mapped" dependencyOnly="true">
 <InputDataConnector ref="myLDAP" attributeNames="distinguishedName" />
 <ValueMap>
 <ReturnValue>employee</ReturnValue>
 <SourceValue partialMatch="true">,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>staff</ReturnValue>
 <SourceValue partialMatch="true">,OU=Verwaltung,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org<
/SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>faculty</ReturnValue>
 <SourceValue partialMatch="true">,OU=Kollegium,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org<
/SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>student</ReturnValue>
 <SourceValue partialMatch="true">,OU=Studierende,OU=Personen,DC=example,DC=org</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>member</ReturnValue>
 <SourceValue partialMatch="true">,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org</SourceValue>
 <SourceValue partialMatch="true">,OU=Verwaltung,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org<
/SourceValue>
 <SourceValue partialMatch="true">,OU=Kollegium,OU=MitarbeiterInnen,OU=Personen,DC=example,DC=org<
/SourceValue>
 <SourceValue partialMatch="true">,OU=Studierende,OU=Personen,DC=example,DC=org</SourceValue>
 </ValueMap>
</AttributeDefinition>

Finally, it's time to turn the (unscoped) eduPersonAffiliation values created by one of the methods above into a scoped one:

<AttributeDefinition id="eduPersonScopedAffiliation" xsi:type="Scoped" scope="%{idp.scope}">
 <InputAttributeDefinition ref="eduPersonAffiliation" />
</AttributeDefinition>

eduPersonEntitlement

eduPersonEntitlement is a container for all kinds of values and data, usually only with clearly defined values within specific communities. One notable
exception is its global use for location-independent, off-campus authorisation to . Here's a simple example that should work for most Library Services
deployments, giving all subjects you have declared to have an of earlier (see above) or of eduPersonAffilliation member library-walk-in
(someone physically present in library premises) the entitlement, thereby stating that these all are entitled to access licensed common-lib-terms
resources on behalf of your organisation, according to the "common library licensing terms" (again, see for details):Library Services

There are of course many more ways this could be done, depending on local data available and LDAP deployment decisions (e.g. group
implementation). The wiki for the old Shibboleth IDP v2.x software has , including one to recursively map more and more complex examples
affiliations from nested groups within Microsoft "Active Directory" deployments.

Note that those old IDPv2 examples will have to be modified for IDPv4, especially those using / type Script ScriptedAttribute
definitions. The provides the details for such adaptations, though potential changes to IDPv4 would also have IDPv3 documentation
to be considered. If you successfully converted such an example to IDPv3 / IDPv4 format why not share it with the larger community
on the Shibboleth wiki!

https://wiki.univie.ac.at/display/federation/eduPersonEntitlement
https://wiki.univie.ac.at/display/federation/Library+Services
https://wiki.univie.ac.at/display/federation/Library+Services
https://wiki.shibboleth.net/confluence/display/SHIB2/ResolverScriptAttributeDefinitionExamples
https://wiki.shibboleth.net/confluence/display/IDP30/ScriptedAttributeDefinition#ScriptedAttributeDefinition-V2Compatibility

eduPersonEntitlement, variant 1: library services for members

<AttributeDefinition id="eduPersonEntitlement" xsi:type="Mapped">
 <InputAttributeDefinition ref="eduPersonAffiliation" />
 <ValueMap>
 <ReturnValue>urn:mace:dir:entitlement:common-lib-terms</ReturnValue>
 <SourceValue>member</SourceValue>
 <SourceValue>library-walk-in</SourceValue>
 </ValueMap>
</AttributeDefinition>

Another use-case relevant to the ACOnet and GÉANT communities is the that relies on a specific GÉANT Trusted Certificate Service eduPersonEntitle
 value to signal that a given subject satisfies the criteria to automatically issue them personal X.509 certificates (based on personal data provided in ment

other SAML attributes, such as name and email address).

We can amend the previous example above to do both: Assign the entitlement to all s and users, and common-lib-terms member library-walk-in
also assert that all your subjects with the an affiliation of have had their identity sufficiently verified that they can all request personal certificates faculty
via . TCS You'll need to adapt that second part as needed, depending on what parts of your community you intend to offer the TCS personal

 I.e., for TCS we just add the second ValueMap to the above config, resulting in this example:service to.

eduPersonEntitlement, alternative 2: library services for members, TCS for e.g. faculty

<AttributeDefinition id="eduPersonEntitlement" xsi:type="Mapped">
 <InputAttributeDefinition ref="eduPersonAffiliation" />
 <ValueMap>
 <ReturnValue>urn:mace:dir:entitlement:common-lib-terms</ReturnValue>
 <SourceValue>member</SourceValue>
 <SourceValue>library-walk-in</SourceValue>
 </ValueMap>
 <ValueMap>
 <ReturnValue>urn:mace:terena.org:tcs:personal-user</ReturnValue>
 <SourceValue>faculty</SourceValue>
 </ValueMap>
</AttributeDefinition>

You can have elements in a ValueMap, e.g. to additionally allow everyone with affiliation to get a personal certificate as several SourceValue student
well. See the examples above (eduPersonScopedAffiliation) or the Shibboleth wiki for details.

schacHomeOrganization

schacHomeOrganization is sometimes needed by services, usually as an IDP- and -independent identifier for an organization, e.g. to map entityID
subjects from an IDP to a contract in the name of the organisation that runs the IDP (without having to hard-code the IDP's entityID into some
configurationn file or database). The following will work for anyone, based on the data connector provided below (that's also generic, thanks to its use of
Java properties):

<!-- https://wiki.univie.ac.at/display/federation/schacHomeOrganization -->
<AttributeDefinition id="schacHomeOrganization" xsi:type="Simple">
 <InputDataConnector ref="staticAttributes" attributeNames="schacHomeOrganization" />
</AttributeDefinition>

Data Connectors

Add these two DataConnector XML elements to the same file you've been adding the XML attribute-resolver.xml AttributeDefinition
elements to above, e.g. at the very end of the file (but before the closing tag of the AttributeResolver element).

TCS has very specific requirements when someone should be marked as eligible to request personal certificates. Do not just blindly copy/paste
the following configuration into your IDP before having read and understood those requirements. Cf. and TCS Personal Certs ACOnet

 in this wiki, as well as for more information.Zertifikats-Service https://www.aco.net/tcs.html

If you're supporting use of your Shibboleth IDP to access services check out USI another variant to create eduPersonEntitlement values
that specifically includes code for use with (some of) the USI Service Provider.

http://www.geant.org/Services/Trust_identity_and_security/Pages/TCS.aspx
https://www.aco.net/tcs.html
https://www.aco.net/tcs.html
https://wiki.univie.ac.at/display/federation/schacHomeOrganization
https://wiki.univie.ac.at/display/federation/TCS+Personal+Certs
https://wiki.univie.ac.at/display/tcs
https://wiki.univie.ac.at/display/tcs
https://www.aco.net/tcs.html
https://wiki.univie.ac.at/display/federation/USI+Wien
https://wiki.univie.ac.at/display/federation/IDP+4+USI+Wien+eduPersonEntitlement

Static

First, here's a simple static DataConnector referenced by one of the AttributeDefinitions above. This only produces a single attribute (value), with an id of
"schacHomeOrganization" and the IDP's scope as the sole value. "Static" here means its value(s) will unconditionally be produced for everyone using your
IDP, no matter who they are or what attributes they have. That's perfectly fine for this SCHAC attribute since that's about identifying the organisation, not
the subject.

Static DataConnector, use as-is (i.e., don't change anything here)

<DataConnector id="staticAttributes" xsi:type="Static">
 <Attribute id="schacHomeOrganization">
 <Value>%{idp.scope}</Value>
 </Attribute>
</DataConnector>

LDAP

And finally here's a verbatim copy of the default example of an LDAP DataConnector (taken from the file). All the attribute-resolver-ldap.xml
parameters and values in this DataConnector come from the file or from , so nothing conf/ldap.properties credentials/secrets.properties
needs to be set/changed below – with the exception of possibly removing some of the XML attributes: E.g. for LDAP directory server deployments without
any transport-layer security (no TLS and no SSL) you'd need to remove the XML-attribute (i.e., the whole line starting with). The trustFile trustFile
rest should still work for everyone, based on the (correct, or default) settings in :ldap.properties

LDAP DataConnector

<DataConnector id="myLDAP" xsi:type="LDAPDirectory"
 ldapURL="%{idp.attribute.resolver.LDAP.ldapURL}"
 baseDN="%{idp.attribute.resolver.LDAP.baseDN}"
 principal="%{idp.attribute.resolver.LDAP.bindDN}"
 principalCredential="%{idp.attribute.resolver.LDAP.bindDNCredential}"
 useStartTLS="%{idp.attribute.resolver.LDAP.useStartTLS:true}"
 connectTimeout="%{idp.attribute.resolver.LDAP.connectTimeout}"
 trustFile="%{idp.attribute.resolver.LDAP.trustCertificates}"
 responseTimeout="%{idp.attribute.resolver.LDAP.responseTimeout}"
 connectionStrategy="%{idp.attribute.resolver.LDAP.connectionStrategy}"
 noResultIsError="true"
 multipleResultsIsError="true"
 excludeResolutionPhases="c14n/attribute">
 <FilterTemplate>
 <![CDATA[
 %{idp.attribute.resolver.LDAP.searchFilter}
]]>
 </FilterTemplate>
 <ConnectionPool
 minPoolSize="%{idp.pool.LDAP.minSize:3}"
 maxPoolSize="%{idp.pool.LDAP.maxSize:10}"
 blockWaitTime="%{idp.pool.LDAP.blockWaitTime:PT3S}"
 validatePeriodically="%{idp.pool.LDAP.validatePeriodically:true}"
 validateTimerPeriod="%{idp.pool.LDAP.validatePeriod:PT5M}"
 validateDN="%{idp.pool.LDAP.validateDN:}"
 validateFilter="%{idp.pool.LDAP.validateFilter:(objectClass=*)}"
 expirationTime="%{idp.pool.LDAP.idleTime:PT10M}"/>
</DataConnector>

If you're done with editing activate the changes by restarting Tomcat – assuming you've changed some Java property files (such as saml-nameid.
 which are only read on startup of the JVM:properties)

systemctl restart tomcat9

At any later point, once the IDP has all the properties set, you should activate resolver changes in a running IDP by reload only the IDP's attribute resolver
sub-system (by restarting the IDP or Tomcat):not

/opt/shibboleth-idp/bin/reload-service.sh -id shibboleth.AttributeResolverService

Check your for any ERROR or WARN occurances.idp-process.log/opt/shibboleth-idp/logs/

That should cover producing all the common attributes in use in federation (and interfederation) today! Next move up to configuring .attribute release

https://wiki.univie.ac.at/display/federation/IDP+4+Attribute+release

	IDP 4 Attribute resolution

